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Equilibrium distributions for random walkers in random media 
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Abstract. We study the Renyi entropies of the probability distribution of a random walker 
in a random medium of finite total volume. In one dimension of space we show that they 
tend, for large lattices, to constants independent of the lattice size. Thus, the distribution 
is not multifractal, in contrast to a recent claim. We conjecture that the same is true for 
any dimension if the random force is derived from a potential. In the more interesting 
general case (unconstrained forces), we cannot make a definite statement. 

1. Introduction 

Random walks in random media have been the subject of numerous recent papers 
[l-lo]. The central quantity studied in most of them was the RMS displacement (Ax)* 
and its time dependence in an infinitely extended medium. In the following, we shall 
only consider the case of zero average drift and of short-range correlations between 
the forces. In one dimension one finds [lo] a logarithmic increase (Ax(r))2- (log t)4. 
In two or more dimensions, the results depend on whether the random forces are 
curl-free (and thus derivable from a potential), are divergence-free, or are completely 
general. In the latter case, the randomness does not change the usual asymptotic 
behaviour Ax( t )  - 4 in three and more dimensions, while it adds logarithmic correc- 
tions to it in two dimensions [3,7]. In the potential case, the randomness is still 
relevant in two dimensions, and the critical dimension above which normal diffusion 
prevails is greater than 2 [4,6]. 

In contrast to the time dependence of the displacement, much less effort has been 
devoted to understanding the ultimate distribution in media of finite volume. 

In one dimension, this might seem a trivial problem: any random medium can be 
represented by a random potential, and the distribution is simply given by the 
Boltzmann-Gibbs formula. Nevertheless, it is not entirely trivial to characterise the 
statistical properties of this distribution. The only paper we are aware of which deals 
with this question [9] arrives at a wrong result. It claims that the distribution is 
multifractal [ll]. This would mean that the Renyi entropies Hq [12] increase linearly 
with the logarithm of the length L of the medium, such that the generalised dimensions 
[13] D, = Hq/log L are finite and depend non-trivially on q. 

Such a multifractal behaviour seems at first sight very reasonable. Indeed, the 
height distribution of a random potential is Gaussian, and thus the distribution of the 
probabilities p ( x )  for the walker to be at any randomly chosen position x should be 
log-normal. A log-normal distribution is the simplest multifractal distribution (we 
ignore here the usual problems associated with the lack of normalisation of a log-normal 
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distribution; actually the distribution should be log-binomial according to this 
argument). 

It is the purpose of the present paper to show that this is wrong. The point missed 
by the above argument is that the distribution is not self-averaging. It would be correct 
if we were to study a walker in a potential with a Gaussian distribution but with 
short-range spatial correlations. But assuming a random short-range force or a random 
bias in a hopping model forces the potential to be the graph of a Brownian walk, thus 
implying very strong correlations of the potential. 

As a consequence, one finds that all the Renyi entropies with q > 0 tend to constants 
for L + 00, in the one-dimensional case. 

We conjecture that this behaviour prevails also in higher dimensions, provided the 
random forces are derived from a potential, although our arguments are much weaker 
there than in one dimension. Furthermore, in general the forces cannot be derived 
from a potential (if they are not curl-free). In this case, we have no good theoretical 
arguments. Also, numerical simulations are much harder than in one dimension and 
thus our numerical results for this case are inconclusive. 

2. Theoretical arguments 

Let us consider a finite array of N sites labelled by i = 1,2 , .  . . , N. At each time step, 
a particle at site i will jump either to its right neighbour (with probability U , )  or to its 
left neighbour (with probability 1 -U,). We assume that for i # 1, N these hopping 
rates are random variables with distributions independent of i, and with finite logarith- 
mic variance, ((ln U)') <CO. In addition, we assume left-right symmetry, i.e. we assume 
U ,  and 1 - U ,  to have the same distribution (in particular, ( U )  = f). 

For a fixed configuration of hopping rates, the probability p i (  t )  to be at site i thus 
evolves according to the master equation 

P l ( t +  1) = ~ i - l P l - l ~ o + ~ ~ - ~ l + l ~ P l + l ~ ~ ~ .  (2.1) 
If we assume no-flux boundary conditions, ul = 1 and uN = 0, then we have detailed 
balance for the stationary distribution 

uipi = (1 - U I + l ) P # + 1 .  

PI= z-' 

(2.2) 
We then obtain immediately 

where the normalisation constant Z is given by 
N i - 1  

i = 2  k = l  1 - U k + l  
(2.4) 

For large N, we can write log(Zpi) approximately as a sum of independent terms 

Its increase with i is just like a random walk with diffusion constant 



Equilibrium distributions for random walkers in random media 775 

The lack of self-averaging mentioned in the introduction arises from the fact that the 
normalisation 2 is in general not of order N. Instead, its logarithm diverges in the 
average like m. 

Our aim is to estimate the average Renyi entropies defined as 

with q > 0, in the limit of large N. 
The dominant behaviour of Hq can indeed be estimated very easily. We first observe 

that the maximum of p i  in a given realisation of the lattice is almost surely (a.s.) far 
from the ends, for large N, and the probabilities p i  will be non-negligible only near 
that maximum. Around the maximum, the logarithm of p i  looks thus typically as 
shown in figure 1. Since log pi essentially makes a random walk with diffusion constant 
0, the typical range over which p i  is non-negligible is of length -D. Thus we 
immediately get a rough estimate H, = -In D for all q > 0. 

I U, 

‘0 

I I .  1 a * 1 1  1 .  ~v m 
U 
1 -U, 

Figure 1. Typical behaviour of the logarithm of the stationary probabilities p , .  The highest 
probability is assumed to occur at site io.  

Let us now replace this rough argument by a more detailed one which involves 
essentially a mean-field-type approximation. We consider only the limit of large N 
and of hopping rates close to f. The latter corresponds to small differences p i  -pi-1,  
and thus allows us to approximate the random function i + pi by a continuous random 
walk. 

For a given configuration of hopping rates, we denote the position of the maximal 
pi by io (see figure l ) ,  and we define 

b ( r )  =ln(~io+r).  (2.8) 
Just as logpi is, in the considered limit, a random walk in a homogeneous medium 
with diffusion constant D starting at i = 0, b ( r )  is in this limit a random walk starting 
at r = 0, but conditioned on staying below the value b(0) for all ‘times’ r. The average 
distance for this kind of random walk is found by the following argument. First we 
have to estimate the A 4  dependence of the probability distribution P ( A 4 ,  r), Ab = 
b(0) - # ( r ) .  This distribution is, up to normalisation, the product of the conditional 
probability ( a: Ab exp( - A b 2 / 4 D r ) )  conditioned on having A b (  r’) 3 0 for 0 < r’ < r, 
times the probability (a: A b  [ 141) that A + (  r”) > 0 for r < r” < R, for some R >> r. From 
this, the average A b  is found to increase with r as 
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The mean-field-type approximation consists now of neglecting all fluctuations of 4( r), 
i.e. in assuming that the brackets in (2.9) can be omitted. In this approximation we get 

(2.10) 

= (1 - q)-' In( 2 loe d r  Z-' exp( - q m )  (2.11) 

with 

Z = 2 lom d r  e x p ( - w ) ,  

Evaluating this gives straightforwardly 

21nq 4 0  
lim H q = - -  In - 

N-LX 9 - 1  7r 

(2.12) 

(2.13) 

We recover indeed the leading term Hq = -In D as long as q > 0. We also see that 
Hq + 00 for q + 0, as it should be (we have of course Ho = In N ) .  

Neglecting fluctuations should not induce a very large error for q = 1, but is 
obviously wrong for large q. The limit q+co can, however, be treated exactly, as we 
get in this limit only contributions from the fastest possible decay of 4 ( r ) .  Assume 
that the ui are bounded away from zero, so that cr = In sup[( 1 - U)/ U ]  is finite. Then 
the dominant contribution to H, comes from a configuration where 4(0)= 4(1), 
4 ( 1 ) - 4 ( r ) = a ( r - l )  for r > l , a n d  4 ( O ) - d ( r ) = - a r f o r  r<0 .  Aneasy calculation 
then gives 

2 
lim lim Hq = l n 3 .  
q+m N-rm 

(2.14) 

3. Numerical simulations and discussion 

In order to test the predictions of the last section, we have performed extensive 
numerical simulations. 

These simulations are again easiest for one-dimensional lattices, since they enable 
us to use (2.3) and (2.4). These allow very fast evaluation on very large lattices. The 
main restriction on the lattice size is that numerical overflow occurs on most compilers 
for lattices of -104-105 sites. 

In figure 2, we show results obtained from lattices of up to 15 000 lattice sites, with 
15 000 realisations for each size (indeed, the smaller lattices were sublattices of the 
largest ones, which helped to keep CPU time low). The hopping rates were chosen 
uniformly from the interval 0.3 < ui < 0.7. This gives a diffusion constant 0 = 0.1 142, 
and a limiting Renyi entropy limN+= H, = 1.253. Each curve in figure 2 corresponds 
to a fixed value of q, with 0 d q d 3. Since we anticipate the leading finite-size correction 
to the Renyi entropies to go like constant m, we plotted them against l/m. We 
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Figure 2. Renyi entropies (in natural units) for walkers on lattices with up to 1.5 x lo4 
sites, and with a uniform distribution of hopping probabilities in the range 0.3 < U < 0.7. 
For each size, the data are averaged over 1.5 x lo4 different realisations. The curves (starting 
from the topmost) correspond to q =0, 0.25, 0.5, 1.0, 2.0 and 3.0. 
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find indeed that the data can be extrapolated linearly to N+m,  except for those 
corresponding to q = 0. The extrapolated values are shown in figure 3, together with 
our prediction (2.13). The agreement is reasonably good, in view of the crudeness of 
the approximations involved in the theoretical predictions. Most of the discrepancy 
can indeed be attributed to the fact that there are strong finite-r corrections to (2.9) 
in the case of finite diffusion constant D. 

In [SI, the conclusion that the distribution is multifractal was not based on simula- 
tions using (2.3) and (2.4). Instead, there the time-dependent master equation (2.1) 
was solved by iteration, with pi( t = 0) = Sio as initial condition. Since this is much 
slower, these authors could only reach distributions which were spread over - 50- 100 
lattice sites. From our data we see that for lattices of this size, we would not be able 
to reliably distinguish between a multifractal distribution and the correct one. We 
might add that the authors of [9] did not study the asymptotic distribution for t + CO 

on a finite lattice (as we did), but rather the distribution for large but finite t on an 
infinite lattice. Their conclusion would nevertheless have implied that the distributions 
we have studied were also multifractal. 

While the detailed equations (2.13) and (2.14) are, of course, specific to one 
dimension of space, the general heuristic argument for the finiteness of the Renyi 
dimensions should also hold in any dimension 2 2  if the random force is derived from 
a potential. The reason for this is that in any dimension the decay of log pi away from 
its maximum should be essentially -exp(-&), and this decay cannot be overcome 
by the volume element which increases only like a power of r. 

The situation is much less clear in the general case where the force is not derivable 
from a potential. In this case, there is an upper critical dimension d ,  = 2 above which 
the randomness does not imply any anomalous diffusion [7]. This would suggest that 
d = 2 is also the critical dimension at which the effect of the randomness on the 
clustering vanishes. 

In order to test this, we have performed simulations on two-dimensional square 
lattices with L x  L sites, with L G  128. The rates for hopping in the ith direction 
( i  = 1 , .  . . , 4 )  were chosen as ui = r i /ZqX1 rj, with rj uniformly E [0.1, 0.91. Unfortu- 
nately, in this case there exists no closed expression for the equilibrium distribution 
similar to (2.3). Thus we had to estimate it by simulation or by a relaxation method. 
We found that direct simulations of the walks gave very slow convergence. Also, 
over-relaxation methods could not be applied, as the eigenvalues governing the relaxa- 
tion are not bounded away from zero. Thus we finally used the simple Gauss-Seidel 
method. Since this is rather slow, our statistics are now much worse than in one 
dimension. Also, we should expect the asymptotic behaviour to set in later. As a 
consequence, our data (shown in figure 4) are much less clear than those for the 
one-dimensional case. Nevertheless, they indicate that the distribution might not be 
multifractal in the present case either. In order to see this more clearly, we have shown 
in figure 4 not the Renyi entropies Hq themselves, but rather the effective dimension 
D , ( L )  = H,/log L. These should tend towards a constant for L +  CO if the distribution 
were multifractal. Instead, there is a marked downward trend for large L. We checked 
that this behaviour cannot be fitted by a power-law correction D , ( L )  = 
Dq + constant/L", for any value of a. Of course, the data do not show that the Renyi 
entropies are independent of the size L either. Our conclusion is thus that we see 
either strong logarithmic corrections to multifractality (as we might expect at a critical 
dimension), or that the Renyi entropies behave essentially different from what might 
have been expected on the basis of the time dependence of diffusion. 
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Figure 4. Estimated generalised dimensions D,(L) = H,/log L for walks on 2 D  square 
lattices of size L x L with periodic boundaries, plotted as function of 1/L. Curves are 
plotted for q = 4 (O), q = 3 (U), q = 2 (A), q = 1 (0)  and q = 0.5 (0). 

Note added in prooj After submitting this paper, we have performed extensive additional simulations of 
the 2 D  model, with L =  128, L =  192 and L=256.  These new data suggest that D, do tend towards finite 
values for L - >CO, in contrast to those in figure 4. In particular, Dq ( L  = 00) is 1.865 f 0.005 for q = 4, 
1.896i0.003 for q = 3 ,  1.930i0.002 for q = 2 ,  and 1.965*0.001 for q = l .  
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